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Abstract

An understanding of the inherent variability in micro-computed tomography (micro-
CT) data is essential to tasks such as statistical process control and the validation of
radiographic simulation tools. These data present unique challenges to variability anal-
ysis due to the relatively low resolution of radiographs, and also due to minor variations
from run to run which can result in misalignment or magnification changes between
repeated measurements of a sample. Such positioning changes artificially inflate the
variability of the data in ways that mask true physical phenomena. We present a novel
Bayesian nonparametric regression model that incorporates both additive and multi-
plicative measurement error in addition to heteroscedasticity to address this problem.
We use this model to assess the e↵ects of sample thickness and sample position on
measurement variability for an aluminum specimen. Supplementary materials for this
paper are available online.
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1 Introduction

Micro-computed tomography (micro-CT) is a form of radiography employed for the non-

destructive three-dimensional characterization of small objects. As in traditional CT scan-

ning, multiple radiographs of an object are taken from di↵erent angles, and reconstruction

algorithms are used to determine the properties of the three-dimensional sample. Micro-CT

is applied in fields including industrial nondestructive testing (Hanke et al., 2008), foren-

sics (Thali et al., 2003), paleobiology (Rossi et al., 2004), and biomedical research (Ritman,

2004).

An ongoing area of research is the simulation of radiographic systems. Successful sim-

ulation allows characterization of materials for which collecting experimental data is cost-

prohibitive or otherwise infeasible, as well as the characterization of the measurement sys-

tems themselves for design purposes. The validation process for such models requires an

understanding of the inherent variability of radiographic measurements so that comparisons

between simulated and observed radiographs account for random variation in experimental

results. Such variability assessments can also be used as part of a statistical process control

scheme, to ensure that a machine is performing within acceptable tolerances. Both of these

tasks require an understanding of how various sample and system characteristics influence

measurement variability.

In order to achieve this understanding, repeated measurements of various samples taken

over an extended period of time must be analyzed and the measurement variability quan-

tified. Such a data set has been collected for the purposes of validating a computer model

of a micro-CT machine; however, these data present some unique statistical challenges in

the form of features such as positional measurement error and heteroscedasticity. Failure

to account for these features would lead to incorrect conclusions about how measurement

variability behaves in the micro-CT system. We have developed a novel Bayesian penalized

spline (p-spline) model incorporating both measurement error and heteroscedasticity, which

we have successfully applied to this problem. P-spline models employ a penalty term on

the spline coe�cients, rather than knot selection or derivative based penalties, to control

the smoothness of the resulting function estimate (see e.g. Eilers and Marx, 1996; Ruppert

and Carroll, 1999; Ruppert et al., 2003; Lang and Brezger, 2004). Their flexibility and rela-
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tively simple implementation have led to their being employed for increasingly sophisticated

modeling in both frequentist and Bayesian contexts, including measurement error problems

(Carroll et al., 1999; Berry et al., 2002; Ganguli et al., 2005; Carroll et al., 2006) and sit-

uations requiring adaptive penalty terms (Ruppert and Carroll, 2000; Lang and Brezger,

2004; Jullion and Lambert, 2007; Krivobokova et al., 2008). Ruppert et al. (2003) give an

iterative frequentist approach to incorporating heteroscedasticity into p-spline models, and

Crainiceanu et al. (2007) demonstrated a Bayesian method. While a spline model incorpo-

rating heteroscedasticity and measurement error has been employed for density estimation

(Staudenmayer et al., 2008), to the best of our knowledge this is the first model combining

these elements in the regression context.

In addition to assessing the variability of the radiographs at various locations, we were

also able to use the posterior distributions of the measurement error variables to discover

additional features of the data. In particular, a magnification e↵ect was identified that cor-

responded to a multiplicative measurement error situation. This in turn led to an enhanced

measurement error model including both additive and multiplicative terms.

In Section 2 we describe the experimental setup of the relevant micro-CT system, the

potential benefits to quantifying measurement variability for the system, and the di�culties

in analysis caused by alignment error between samples. Section 3 contains a novel penalized

spline model incorporating both heteroscedasticity in the response and additive measurement

error in the explanatory variable that can be used to address the alignment error problem.

In Section 4 we present the results of applying this model to the micro-CT data set, and also

show an enhancement that incorporates multiplicative measurement error to account for a

magnification e↵ect. Section 5 contains a discussion of our findings.

2 Variability in Micro-CT Data

2.1 Description of the Micro-CT System

Figure 1 shows a side-view of the micro-CT machine under consideration. For this particular

setup, x-rays emitted from the source pass through a 2-slit collimator. The top slit allows

x-rays to pass through a test sample, while the lower slit gives access to a set of six reference
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Figure 1: Diagram of an experimental configuration for a micro-CT machine.

specimens. These reference specimens are included in every micro-CT run for quality control

purposes. Unabsorbed x-rays are registered by an amorphous silicon detector. Samples and

reference specimens are attached to a carousel, which rotates in increments of half a degree

to give 400 di↵erent views per experimental run.

Figure 2 shows di↵erent summary data from a single radiograph. Figure 2(a) is the

measured transmittance at every pixel of the detector. Transmittance is I/I0 where I is

the measured intensity at a particular pixel and I0 is the background intensity value cor-

responding to measured intensity when there is no intervening material. Transmittance is
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Figure 2: The process of converting a radiograph into a lineout for the aluminum reference

specimen. These images show transmittance measurements, which are I/I0. The remainder

of this paper focuses on absorbance measurements, which are � ln(I/I0). The online version

of this figure is in full color.

4



close to 1 in regions where there is no intervening material between the source and the

detector, and drops to 0 when the intervening material blocks all x-ray transmission. The

two light horizontal bands correspond to the slits in the collimator between the source and

the carousel. The darker vertical bands are caused by either the specimen of interest (top

slit) or reference specimens (lower slit). The extremely dark vertical band on the far left is

a copper strip attached to the collimator for calibration purposes. Figure 2(b) shows the

isolation of a single reference specimen, in this case an aluminum cylinder, from the larger

radiograph. Figure 2(c) is a “lineout”: a one-dimensional summary of a radiograph that is

in this case generated by the pointwise median from the central rows of the lower slit. Line-

outs from multiple radiographs taken for di↵erent carousel positions can be used to generate

2-dimensional reconstructions, which are representations of a “slice” taken out of the core

of the sample.

2.2 Benefits of Understanding Micro-CT Variability

An understanding of measurement variability is essential for any inferential procedure to

ensure that a genuine result of interest can be distinguished from random chance. For the

micro-CT system described, there are two particularly relevant applications for a compre-

hensive variability study of the system.

The first application is for the validation of the HADES radiographic simulation tool. A

computational model for a radiographic system is useful for a variety of purposes, including

supplementing physical measurements when large numbers of samples need to be character-

ized and exploring the potential e↵ects of system changes on measurement quality. HADES

is a ray-tracing radiographic simulation code developed under the auspices of the Department

of Energy (Aufderheide et al., 2004). It uses pre-computed results from high-fidelity Monte

Carlo simulators such as MCNP (Brown et al., 2002) to model x-ray source and detector

behavior combined with a geometric model and the LLNL Evaluated Photon Data Library

(Cullen et al., 1989) to account for the e↵ects of x-ray passage through target objects. This

strategy allows HADES to be used to rapidly simulate fairly large experimental setups with

high accuracy. In the past, HADES has been applied to problems such as assessing the

relative impact of di↵erent sources of radiographic blur (von Wittenau et al., 2002). There is

currently interest in using HADES to supplement experimental measurements for the partic-
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ular micro-CT system described in this paper, which would lead to significant cost reductions

as opposed to carrying out physical measurements for large numbers of samples (Chen et al.,

2011). Before HADES can be used in this way, the accuracy of the simulator must be quan-

tified for a variety of materials. However, the existing data intended for validation consists

of materials that were each characterized by only a single micro-CT run. Due to changes

in the experimental setup it is not possible to acquire additional runs for these validation

specimens, and therefore it is not possible to quantify the measurement variability of the

machine using only the original validation data. Without an understanding of measurement

variability, discrepancies between a HADES simulation and the corresponding measurement

can not be definitively attributed to errors in the simulation, since they could be due to

fluctuations in the micro-CT system. Some method for estimating measurement variability

would allow HADES to be evaluated more fairly.

A second application is for online quality control for the micro-CT machine itself. An

automated method could compare single lineouts for the existing quality control specimens

to a distribution based on a sample of preexisting measurements. If the system produces

results which are inconsistent with previous measurements, this is an indication that there

could be a problem with the machine. At that point, diagnostics could be run to identify

why the system is producing inconsistent results. In addition to flagging suspect results

in an automated manner, this method could save time by providing the means to identify

aberrant runs before they are complete.

Both of these applications require a solid understanding of the behavior of micro-CT

measurements produced by a particular machine over the course of many experimental cycles

taking place over an extended period of time. This, in turn, requires repeated measurements

for a set of specimens. Fortunately, the micro-CT system has such a dataset in the form

of the reference specimens from the lower level of the carousel. Each reference specimen

was measured repeatedly over the course of numerous micro-CT runs as a quality control

measure, and the presence of multiple materials in the reference specimen set provides an

opportunity to study the overall behavior of the system. These specimens can also form the

basis for an online quality control scheme once a variability study is completed.

Rather than presenting the results of the full analysis of the reference specimen set, this

paper instead focuses on the statistical challenges inherent in that analysis. For this reason,
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the remainder of the paper will focus on the aluminum reference specimen. Note that the

challenges identified in the analysis of this single specimen are characteristic of those seen for

the larger set, and, indeed, of any repeated measurements analysis for this system. Therefore,

the methods presented here are suitable for, and indeed intended for, wider application.

2.3 Description of Aluminum Reference Specimen Data

The data under consideration consist of 28 micro-CT runs of an aluminum cylinder. The

aluminum reference specimen is of particular interest in that it frequently passed through

both the location closest to the source and the location closest to the detector in a single

micro-CT run. Since runs cover only 200� of rotation, this behavior was not observed for

any other sample measured multiple times. Thus, studying the aluminum sample allows us

to assess unique positional e↵ects on measurement variability.

Three radiographs from each run were selected for assessment, corresponding to the

0�, 90�, and 180� carousel positions, where 0� is the location placing the sample closest

to the x-ray source, and 180� is the location closest to the detector. For this analysis,

transmittance measurements are converted to absorbance, which is � ln(transmittance) or

� ln(I/I0). These absorbance radiographs were then converted to median filtered lineouts,

which consisted of the pointwise median of five pixels from the core of the specimen for each

column in the radiograph. Lineouts for this application were 161 detector pixels long, which

encompassed the sample of interest as well as some background areas in all cases. Lineouts

were considered in place of full radiographs due to the fact that the median filtering reduced

variability, which should provide more informative results for either comparisons to HADES

or for quality control purposes. Median filtering is preferred to mean filtering when, as in

this application, an image may contain extreme outliers in the form of bad detector pixels.

The pixel-wise mean and standard deviation for each of the three carousel positions are

shown in Figure 3. The mean lineouts for the aluminum sample are similar between the 3

locations. However, as the sample moves farther from the source, the portion of the lineout

containing the sample becomes smaller. This is due to the fact that samples closer to the

source have a greater e↵ective magnification than those farther away, and also possibly due

to the increased e↵ect of x-ray scatter. Also of interest are the standard deviation spikes

at the edges of the sample that appear for each carousel position. A näıve interpretation
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Figure 3: Mean and standard deviation at each pixel for an aluminum sample measured at

three di↵erent locations relative to the x-ray source and detector.

of these results would be that variability is exceptionally high for very thin portions of a

sample, but stabilizes as sample thickness increases. However, the spikes are smaller for the

sample with the greatest magnification (0� position), suggesting that this may be an artifact

of relatively low lineout resolution.

Further investigation reveals this to indeed be the case. Figure 4 shows an overlay of two

lineouts from the 180� carousel position, along with the pointwise di↵erence between them.

The first sample is shifted slightly to the left of the second sample, as can be seen particularly

clearly at the sample edges. On the left edge, the grey measurement from lineout 1 is lower

than the aligned black measurement from lineout 2, while on the right side of the sample

the relative sizes of the measurements are reversed. However changing the alignment by a

full pixel would result in a worse overall alignment. Such shifts are due to small changes in

the starting configuration in the micro-CT system from run to run. These are corrected for

the aluminum data using a least squares alignment, but this alignment cannot correct for
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Figure 4: Two lineouts from the 180� carousel position showing evidence of misalignment.

The second plot shows the pointwise di↵erence between these two lineouts.

residual error on the order of a half pixel or less. This residual misalignment has little e↵ect

in the background and core of the sample, where the derivative of the absorbance curve is

near 0, but will contribute significantly to variability at the edges of the sample. Since a

comprehensive variability analysis requires an understanding of how absorbance variability

is a↵ected by sample thickness, it is necessary to separate out this misalignment e↵ect as

much as possible.

The misalignment problem may be viewed as an example of Berkson error (Berkson,

1950). For an observed surrogate P , true covariate value X, and error term W , Berkson

error satisfies the following relationship:

X = P +W. (1)

In this case the observed value is the pixel location, while the true covariate is the actual

location relative to the sample for which absorbance was measured. In contrast to classical

measurement error, in the Berkson error situation, the surrogate value is less variable than

the value of the true covariate. This is clearly true in this case, where the observed pixel

number can be considered to be a “rounded” version of the true location with respect to the

sample. Berkson error is known to substantially alter residual variance estimates in some

cases, even when the mean estimate is largely una↵ected (Carroll et al., 2006). Thus, given
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our interest in the variance for this particular problem, the presence of Berkson error is a

cause for concern.

3 Bayesian Spline Model with Measurement Error

The model employed to analyze these data must have several key properties. The model

for the mean must capture all relevant features for the radiographic lineouts. The model

must allow for heteroscedasticity from pixel to pixel to capture the changing characteristics

of variability throughout a sample. For this application the model for the variance is as

important, if not more so, than the model for the mean. In such cases it is imperative that

a model which can adequately capture the behavior of the variance be used (Carroll, 2003).

Finally, the model must incorporate some method for correcting the misalignment discussed

in the previous section.

We selected a Bayesian penalized spline (p-spline) approach for our base model. The

advantages of using the Bayesian context for the model are two-fold: 1) Bayesian p-splines

have already been used for both measurement error models and in situations where there is

heteroscedasticity in the response error and provide a natural way to integrate both, and 2)

Bayesian models provide uncertainty information about all variables of interest, including

the local variance and measurement error, in the form of the posterior distribution.

Our model is based on that of Crainiceanu et al. (2007), which employed both adaptive

penalty terms for a p-spline regression model and heteroscedasticity in the response, and

we have used a modified form of their MATLAB code for this analysis. We have altered

this model to incorporate both a Berkson error component and positional independence for

heteroscedasticity. The new model uses a penalized linear spline with knots {m
k }Km

k=1. It can
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be summarized as:

yij = �0 + �1xij +
KmX

k=1

bk(xij � 

m
k )+ + ✏ij

�k ⇠ N(0, �2
�)

bk ⇠ N(0, �2
b (

m
k ))

✏ij ⇠ N(0, �2
✏ (pj))

xij = pj + wi

wi ⇠ Unif(�0.5, 0.5)

where yij is the measured absorbance for the ith lineout at an observed pixel location pj,

xij is the true location with respect to the specimen where the measurement was taken,

and (·)+ = max(·, 0). The measurement error wi is shared by all pixels in a particular

lineout, and is modeled as coming from a uniform distribution on the interval (-0.5,0.5). The

magnitudes of the o↵set terms are restricted due to the lack of identifiabilty of the o↵sets

({wi}ni=1 is equivalent to {wi + �}ni=1). By limiting the permissible range, o↵set “drift” in

the Markov Chain Monte Carlo (MCMC) sampler is prevented. The 1 pixel range was found

to be adequate to capture the relative magnitudes of all o↵sets for these data, which agrees

with the intuition that the initial least squares alignment step should eliminate misalignment

greater than half a pixel in either direction. For problems where hard boundaries for o↵set

sizes may not be appropriate, alternative solutions to the identifiability problem include

setting one o↵set to 0 or restricting the mean of the collection of o↵sets to be 0. Similar

results were observed for all three alternative prior formulations when applied to micro-CT

data.

Note that the e↵ective smoothing parameter for a p-spline with constant error variance

�

2
✏ and constant �2

b is the ratio �

2
b/�

2
✏ , with a small value corresponding to a large amount

of smoothing. Therefore, if heteroscedastic errors with variance �

2
✏ (·) are included in the

model without an adaptive �

2
b (·) term, then the e↵ective smoothing parameter will vary

according to the estimated error variance, but not the behavior of the underlying mean

function. Allowing both terms to be functions of the input location provides more flexibility

for roughness penalization.

The prior on �

2
b (

m
k ) follows a degree 1 log spline model as in the original Crainiceanu
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et al. (2007) paper:

log(�2
b (

m
k )) = �0 + �1

m
k +

KbX

r=1

cr(
m
k � 

b
r)+ + vk

�r ⇠ N(0, �2
�)

cr ⇠ N(0, �2
c )

1/�2
c ⇠ Gamma(↵c, �c)

vk ⇠ N(0, �2
v).

The error precision 1/�2
✏ (pj) at pixel j is treated independently of other pixels, and is

given a gamma prior:

1/�2
✏ (j) ⇠ Gamma(↵✏, �✏).

This is somewhat reminiscent of the method in Lang and Brezger (2004), where the smooth-

ing parameter �2
b (·) was treated independently from knot to knot. The distinction lies in the

fact that our model focuses on highly localized behavior in the error variance, while Lang

and Brezger (2004) were concerned with localized behavior in the mean function.

Variance parameters at di↵erent pixel locations are treated independently due to concern

that smoothing the variance estimates within the model could mask genuine characteristics

of the data. In situations where variance would be expected to change smoothly with respect

to the covariate, the original log spline model for error variance from Crainiceanu et al. (2007)

would be appropriate.

Details of the MCMC procedure used for this model, including prior parameter specifica-

tions, sampling details, and convergence diagnostics, are found in the Supplementary Section

S.1.1. For a MATLAB implementation, 3,000 iterations took roughly 40 minutes to run on a

MacPro desktop with dual quad core 3.2 GHz processors. A similar model not incorporating

measurement error ran in roughly 30 minutes on the same machine.

4 Application for Misaligned Micro-CT data

As discussed in Section 2, variability measurements for micro-CT lineouts are influenced

by small amounts of alignment error. The penalized spline model described in Section 3

12
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Figure 5: The posterior mean for the error standard deviation compared to raw pointwise

results for all three data sets. Pointwise 95% credible intervals are shown as dashed lines.

provides a method for simultaneously correcting for alignment error while estimating pixel-

wise variability for a micro-CT lineout.

4.1 Spline Model with Measurement Error

The Bayesian spline model including measurement error was fit to all three position data

sets for the aluminum specimen. The estimates for the mean absorbance are very similar to

the pointwise results, indicating that misalignment error does not have a substantial e↵ect

on the mean in this case. This is illustrated in Supplementary Figure 3.

The posterior mean for the standard deviation (�✏(pj)) for absorbance is shown in Figure

5. In this case, the di↵erence between the measurement error model and raw results is

more dramatic. The posterior standard deviation estimates at the edges of the sample are

substantially less than those based on raw data, with the largest change being an 10-fold

reduction for pixel 117 in the 0� sample. In locations where the slope of the absorbance

function is near 0, we once again see agreement between the raw pointwise results and those

corrected for alignment error. Some residual variability spikes remain at the edges of the

sample. One suspected cause is further explored in Section 4.2. The most complete correction

of the spiking phenomenon occurs for the 0� sample, which is perhaps unsurprising since it

su↵ered the least from misalignment error in the first place.
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4.2 Magnification E↵ects and Residual Variability

It has been noted that the variability spikes at the edges of the sample are significantly

reduced by the alignment error model, but are not eliminated completely. Some portion

of this variability was suspected to be due to magnification di↵erences, which manifest as

alternative alignments. The magnification of a specimen for a particular radiograph is a

function of its distance from the detector. The closer a sample is to the detector, the smaller

its magnification will be. This is why the lineouts for the 180� data set, which corresponds

to the location closest to the detector, are narrower at the base than those in the 0� set, for

which the sample was farthest from the detector. Even for a fixed carousel position, slight

changes in specimen location, and therefore magnification, are observed.

Since two lineouts with di↵erent magnification cannot be perfectly aligned against each

other, they tend to align preferentially against one side. This leads to a dramatic reduction

in observed variability on the preferentially aligned side, but not on the other. (Note that

magnification errors tend to be smaller than misalignment errors, so some reduction will be

observed on both sides relative to the raw pointwise results.) Our model can capture such

alternative alignments and include them in posterior estimates for the mean and variance.

An example of alternative alignments can be seen in Figure 6, which shows an alternative

alignment captured by one of the Markov chains for the 90� sample position. In the left plot,

mean o↵sets for each position are shown. Due to a lack of identifiability, each collection

of 28 o↵sets is standardized to have mean 0. Notice that three of the chains show highly

similar alignments, while the fourth chain exhibits a distinctly di↵erent conformation that at

times di↵ers from the more common one by more than a tenth of a pixel. The corresponding

e↵ect on posterior standard deviation estimates is shown in the right plot of Figure 6. The

standard chains preferentially correct for misalignment on the left side of the sample, leading

to a reduction in variability relative to the alternative chain for most points between pixel

numbers 40 and 80. Similarly, the alternative alignment leads to a reduction in standard

deviation on the right side of the sample for most pixel locations between 80 and 120. All

chains still show sharp increases in standard deviation within two pixels of the edge. Note

that we have never observed a shift from one preferred alignment to another within a Markov

chain. Due to the relatively slow mixing of the alignment o↵sets, the most e�cient way we
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Figure 6: A demonstration of alternative alignments for the 90� sample. Results from three

Markov chains showing one alignment are denoted by circles, while the Markov chain showing

an alternative alignment is denoted by a ‘+’.

have found to identify these situations is by using randomly initialized o↵sets and running

multiple chains.

This issue also illustrates the value of a full Bayesian analysis. A point estimate of

measurement error, such as a maximum likelihood or maximum a posteriori estimate, would

fail to capture this behavior, and lead to an artificial increase in the asymmetry of the results,

as well as failing to present an explanation for this source of residual alignment error.

4.3 Spline Model with Both Additive and Multiplicative Measure-

ment Error

To address the presumed magnification e↵ect, a model that combined additive and multi-

plicative error was implemented. Specifically, the model from Section 3 was modified such

that:

xij = mi(pj � ci) + ci + wi

mi ⇠ N(1, �2
m)

where mi is a multiplicative measurement error term that represents a change in the magni-

fication of the sample. The term ci is a deterministic value for the center of the aluminum
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sample in a particular lineout, and is identified by taking the median of all pixel locations

with absorbance greater than half of the maximum absorbance for the lineout. This method

was found to be more robust than taking the location of the global maximum for absorbance.

The centering variables are not required to correct for multiplicative measurement error; how-

ever they do ensure that the additive terms wi in this model are directly comparable to those

from the version without multiplicative measurement errors. In their absence, the values for

wi become larger since the alignment of the samples is a↵ected by the rescaling as well as

physical position shifts. MCMC details are found in Supplementary Section S.1.2.

Figure 7 shows the error standard deviation estimates from this model as functions of

both pixel location and pointwise mean absorbance. Pointwise results and the estimates from

the o↵set only model are included for comparison. The mean absorbance results were not

substantially di↵erent from either the pointwise or o↵set only results, and are not pictured.

The error standard deviation plots reveal several interesting features. Firstly, both models

including measurement error components, represented in Figure 7 by black and grey stars,

provide substantial reductions in variability as compared to the pointwise results, represented

by grey circles. At the extreme edges of the sample, all three models show variability spikes,

with the largest for the pointwise results, the second largest for the magnification model

results, and the smallest for the o↵set only model. This result indicates that uncorrected

magnification changes are not causing the residual variability spikes observed in the o↵set

only model, and indeed it seems that the inclusion of a magnification e↵ect is producing a

reduction in model accuracy. Potential causes for these spikes are discussed in Section 5.

Moving slightly closer to the central portion of the specimen, such as the region from pixel 40

to pixel 50 for the 0� sample position, shows that the model including magnification reduces

variability in this region. Not only that, but the variability of the standard deviations

themselves, as represented by 95% credible bounds, is reduced relative to the o↵set only

model. For example, the dashed bounds of the o↵set only model are considerably wider than

the corresponding solid bounds for the new model at pixels 45-60 of the 180� position plot.

This is at least in part due to the elimination of alternative alignments, which were never

observed in the output of the model including a magnification e↵ect. If the spiking at the

edges of the sample is ignored, both standard deviation estimates and the width of credible

bounds for those estimates gradually increase from background regions to the core of the
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DIC Comparison

0� Position 90� Position 180� Position

No Measurement Error -31570 -30930 -33314

O↵set Only -33940 -33970 -34760

O↵set and Magnification -34407 -34462 -35342

Table 1: DIC comparison of models with and without measurement error components.

sample.

Accounting for alignment error, either multiplicative or additive, in the model radically

changes the observed relationship between absorbance and variability. Note that absorbance

in a uniform material has a monotonic relationship with the path length through the material,

and to some extent can stand as a proxy for sample thickness.

The raw data results show a low level of background variability which spikes at the edges

of the sample, and then decreases in a nonlinear fashion. It appears to be leveling o↵ within

the sample core. In contrast, for the results from both of the measurement error models,

the standard deviation is increasing from the background rate to a higher level in the core,

excluding residual variability spikes for 3-5 pixels on either edge of the sample. This leads

to the fundamentally di↵erent conclusion that variability in absorbance measurements will

generally increase as sample thickness increases, and once again highlights the importance

of addressing measurement error when estimating residual variances.

It is not immediately obvious which measurement error model, additive only or additive

and multiplicative, provides the best fit to the data. While the model including the magnifi-

cation e↵ect produces additional variability reduction in the core of the sample, it increases

observed variability at the extreme edges. Therefore, formal model selection procedures are

needed to evaluate the relative quality of these models. It was decided to also include a

spline model without any measurement error terms in the comparison. (Additional details

on the no measurement error model are given in Supplementary Section S.2.) The Deviance

Information Criterion (DIC) proposed by Spiegelhalter et al. (2002) provides a natural means

of comparing multiple Bayesian models fit via MCMC, where the smallest DIC value corre-

sponds to the best model. More details on the DIC are provided in Supplementary Section

S.4. The results of this analysis are given in Table 1.
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For all three specimen positions, the model with magnification error is superior to the

other models, as indicated by its having the lowest DIC. Similarly in all three cases, the

o↵set only model is superior to the no measurement error model. This provides compelling

evidence that the inclusion of both o↵set and magnification e↵ects in the model for these

data is justified.

4.4 Position E↵ect

Recall that the particular value of the aluminum reference specimen is that it is the only

specimen with repeated measurements available at both the carousel position closest to the

source and that closest to the detector. This allows us to evaluate what di↵erence, if any,

the location of the sample makes on measurement variability. Figure 8 shows a comparison

of the variability results (posterior mean variance) for each of the three sample positions

and for both measurement error models. Note that variance is pictured instead of standard

deviation due to the fact that it shows a better separation of both model and positional

results.

High variance values in the 0.1-0.5 absorbance region correspond to remaining variabil-
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Figure 8: Comparison of measurement variability for each of the three sample positions. The

plot includes both the final model which corrects for both magnification and o↵set errors as

well as the o↵set only model.
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ity spikes at sample edges, which will be further discussed in Section 5. Interestingly, all

specimen positions have similar error variance values to one another throughout most of the

absorbance range regardless of the measurement error model. The results for the o↵set only

and o↵set plus magnification models are clearly separated throughout most of the range. For

both models, however, the 90� position data, indicated by the ‘+’ character in the figure, has

a higher variance in the sample core (i.e. the highest absorbance region) than either the 0�

or 180� samples. This could be due to the fact that the 90� sample position corresponds to a

di↵erent location on the detector, which might have higher measurement variability. In any

case, samples measured close to the center of the detector appear to have lower measurement

variability than those at the edge, regardless of the exact distance from the detector and

source.

5 Discussion and Conclusions

We have presented a new model for nonparametric regression in the presence of both het-

eroscedasticity and measurement error. This model was developed for and applied to a

radiography data set that exhibited misalignment that severely a↵ected variability estimates

at the edges of samples. An additional source of misalignment, in the form of a magnification

e↵ect caused by the sample moving closer to or farther from the x-ray source was also iden-

tified, and addressed via a multiplicative measurement error term. When misalignment was

removed, variability in the absorbance measurements was reduced significantly, revealing an

apparent monotone increasing relationship between absorbance (which is a proxy for sample

thickness) and the standard deviation of absorbance measurements. Some residual variabil-

ity spiking was still observed at the extreme edges of specimens regardless of the alignment

technique applied.

By comparing results for the same specimen at three carousel positions, it was also

discovered that measurement variability was not uniform across all locations. In particular,

measurements taken at the center of the detector (0� and 180� positions) exhibited lower core

variability than measurements for the same specimen taken at the edge of the detector (90�

position). This has implications for both quality control and simulation validation e↵orts,

since it indicates that certain regions of the detector produce more repeatable radiographic
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measurements than others.

The statistical techniques developed for this analysis are being applied to a larger ref-

erence specimen data set in an e↵ort to develop a more comprehensive understanding of

measurement variability for the micro-CT system. This variability analysis will ultimately

be of use for applications such as the validation of radiographic simulations and the imple-

mentation of quality control procedures for the system.

Note that what we describe as measurement error modeling is equivalent to curve registra-

tion procedures in functional data analysis (see e.g. Ch. 7 Ramsay and Silverman, 2005). In

particular, the additive measurement error component corresponds to a fully Bayesian shift

registration model, and the combined multiplicative and additive measurement error model

is a linear registration transformation. While more general warping functions, Bayesian and

otherwise, appear in the literature (see e.g. Kneip and Ramsay, 2008; Telesca and Inoue,

2008; Claeskens et al., 2010) and could perhaps reduce the residual spiking left after the

application of either of our models, an advantage of the linear method we use lies in the

physical interpretations of the additive and multiplicative terms. In particular, the additive

component corresponds to jitter perpendicular to the line between the x-ray source and de-

tector, while the multiplicative e↵ect indicates movement parallel to this line. For the dual

purposes we propose for our variability study, identifying these e↵ects is of greater interest

than a more general, but less interpretable, registration function. In particular, for HADES

validation horizontal jitter is irrelevant, since HADES simulations can be carried out at

arbitrarily high resolution. Understanding the range of magnification e↵ects observed for

reference specimens can help to highlight where lack of correspondence between a HADES

prediction and a physical measurement is due to routine changes in sample location versus

a potential significant error in model geometry. However, the the accuracy of the physical

interpretation of the multiplicative error as a pure magnification e↵ect is somewhat in doubt.

The wider functional data literature gives us cause for caution in the interpretation of

the multiplicative error term we use to represent a magnification e↵ect. It is well estab-

lished that registration functions can produce unrealistic results due to the confounding of

scaling di↵erences with amplitude di↵erences (Ramsay and Li, 2002). While the alternative

alignment results from Section 4.2 provide strong evidence that some kind of magnification

e↵ect is in play, it is possible that the e↵ect is smaller than that identified by the measure-
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ment error model, with the excess representing corrections in amplitude di↵erences rather

than in the location of the sample itself. Evidence for this hypothesis is provided by the

fact that the correlation between maximum absorbance for a particular observation with the

corresponding posterior mean multiplicative error parameter is around -0.75 for all specimen

locations. This could explain the increase in variability spiking observed in the magnification

model as compared to the o↵set only model. Correcting for amplitude changes closer to the

core of the sample, and thereby reducing variability in that region, could be reducing the

quality of the fit for extreme edge pixels in an un-physical way. It also indicates that the

geometric interpretation of the multiplicative measurement error variables should be used

with caution, since the physical magnification component may di↵er from the corresponding

multiplicative factor. A possible solution to this problem would be to study the physical

micro-CT system to determine what range of magnification e↵ects is physically reasonable,

and impose prior constraints to limit the measurement error model to that range. This would

correspond to the curve registration technique of imposing strong regularity conditions on

warping functions. We also continue to explore other possible physical causes for remaining

misalignment and methods to incorporate them into future modeling.

The final point we wish to make relates to the importance of understanding the character

of data when carrying out statistical analyses. In the absence of alignment correction,

the pointwise variability results give a misleading impression of the relationship between

sample thickness and the variance of the measured absorbance. If the apparent asymptote

in variability in the core of the sample had been taken as real rather than an artifact,

then this would have caused a fundamental misunderstanding of the behavior of absorbance

measurements, and could potentially have lead to incorrect inference for new samples of

di↵erent diameters. By determining that a measurement error situation was causing an

artificial increase in measurement variability and correcting for it, a materially di↵erent

answer was identified. This example emphasizes the need for a careful understanding of

data prior to selecting and applying inferential procedures.

SUPPLEMENTARY MATERIAL

MCMC and Model Selection Details: Supplementary figures for model fits and conver-

gence diagnostics, as well as additional details on MCMC implementation and model
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selection. (PDF)

Software: MATLAB code will be posted online when available. (ZIP)
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